NEUROSCIENCE - RESEARCH ARTICLE

Branislav Savic et al. / Neuroscience 414 (2019) 77-87

High Definition Transcranial Direct Current Stimulation Does Not Modulate Implicit Task Sequence Learning and Consolidation

Branislav Savic,^{a,*} René Müri^b and Beat Meier^{a,*}

^aInstitute of Psychology, University of Bern, Bern 3012, Switzerland

^bDepartment of Neurology, University of Bern and Bern University Hospital Inselspital, Bern 3010, Switzerland

Abstract—The incidental acquisition of a succession of tasks is termed implicit *task* sequence learning. Patients with dorsolateral prefrontal cortex (DLPFC) lesions are strongly impaired in this ability. However, recent results of conventional transcranial direct current stimulation (tDCS) above the prefrontal cortex showed no modulation of implicit task sequence learning and consolidation. One explanation for these null findings is that conventional tDCS has non-focal effects on the cortex. Thus, the aim of the present study was to use a focal type of tDCS, namely high definition tDCS (HD-tDCS), to influence implicit task sequence learning and consolidation. Participants received stimulation during implicit task sequence learning and, 24 h later, consolidation was measured. The results showed that sequence learning was present in all conditions and sessions. Furthermore, consolidation was robust. However, both sequence learning and consolidation were not modulated by stimulation. Thus, this study corroborates previous findings by showing that even focal HD-tDCS is not sufficient to modulate implicit task sequence learning and consolidation. © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: implicit task sequence learning, memory consolidation, high definition transcranial direct current stimulation, dorsolateral prefrontal cortex.

INTRODUCTION

A plethora of studies showed the involvement of the prefrontal cortex for many cognitive functions, such as learning, memory, and the ability to switch between tasks (Nyberg et al., 2003; Wager et al., 2004; Hardwick et al., 2013). Specifically for procedural learning, several studies showed that the prefrontal cortex is critical for acquiring motor and perceptual sequences without intention (Hazeltine et al., 1997; Honda et al., 1998; Peigneux et al., 2000), that is, implicit sequence learning (Cleeremans et al., 1998; Abrahamse et al., 2010). However, so far few studies have explored the neural structures involved in implicit learning of abstract sequences of tasks in which motor response and stimulus features are random, an ability otherwise termed implicit *task* sequence learning (Heuer et al., 2001; Meier and Cock, 2010; Weiermann et al., 2010; Kemény and Meier, 2016).

One informative study compared performance in different groups of patients with the task sequence learning paradigm (TSL) (Meier et al., 2013). The results indicated that while amnestic patients showed intact learning, patients with dorsolateral prefrontal cortex (DLPFC) lesions did not show any sequence learning in the TSL. Based on these

*Corresponding authors.

findings, in a previous study we aimed to influence the TSL by applying conventional transcranial direct current stimulation (tDCS) above the DLPFC of healthy individuals (Savic et al., 2017b). Conventional tDCS consists of two rectangular electrodes with opposite polarities placed on participants scalp (Nasseri et al., 2015; Polanía et al., 2018). Part of the direct current flowing between the electrodes supposedly penetrates to neurons and modulates the probability of action potentials (Krause et al., 2013). Anodal and cathodal tDCS should increase and decrease the probability of action potentials, respectively, and in turn improve and impair behavior (Nitsche and Paulus, 2000; Nitsche et al., 2003). Contrary to our expectations, neither anodal nor cathodal conventional DLPFC tDCS influenced TSL (Savic et al., 2017b). As we suspected that the bimanual design that we have used may have been the reason for these null-findings, in a follow-up study we used a modified version of the TSL with unimanual responses and the same conventional tDCS-montage (Savic et al., 2017a). However, again we found no evidence of tDCS modulation on learning or consolidation, suggesting that a lack of effectiveness of conventional tDCS rather than the response effectors was the reason for the null-finding.

Importantly, these results are in line with numerous findings showing that conventional tDCS is not as effective as originally thought, and that it is susceptible to several

E-mail address: branislav.savic@psy.unibe.ch (Branislav Savic).beat. meier@psy.unibe.ch (Beat Meier).

https://doi.org/10.1016/j.neuroscience.2019.06.034

^{0306-4522/© 2019} IBRO. Published by Elsevier Ltd. All rights reserved.

sources of variability (Horvath et al., 2016; Mancuso et al., 2016; Tremblay et al., 2016; Medina and Cason, 2017; Westwood and Romani, 2017; Lukasik et al., 2018; Meier and Sauter, 2018). Recently, to increase the precision of tDCS and in turn its effectiveness, high definition tDCS (HD-tDCS) was developed (Datta et al., 2008; Datta et al., 2009; Bikson et al., 2012). Hence, the aim of the present study was to influence TSL performance by applying HD-tDCS on the DLPFC.

Specifically, HD-tDCS was applied via five round electrodes with smaller surfaces than the one used for conventional tDCS. Previous neurophysiological and modeling results showed that the effects of HD-tDCS on the cortex seem stronger, last longer, and are more focal than conventional tDCS (Edwards et al., 2013; Kuo et al., 2013). In addition, HD-tDCS seems to be effective on perception, learning, and memory (Nikolin et al., 2015; Zito et al., 2015; Chua et al., 2017; Pixa et al., 2017). However, it has to be highlighted that the quantity of HD-tDCS studies so far is limited. Among this small amount, we used a specific stimulation protocol for two reasons. Firstly, the protocol was shown to be effective on behavior and DLPFC excitability (Nikolin et al., 2015; Chua and Ahmed, 2016). Secondly, the protocol had a duration of 20 min, which previous findings suggested to be more effective on cortical excitability than longer stimulation durations (Vignaud et al., 2018). Last but not least, as empirical results of DLPFC tDCS effects showed that different intensities seem not decisive to influence reaction times and accuracy (Dedoncker et al., 2016; Nikolin et al., 2018), stimulation intensity was not a crucial criteria for the selection of the protocol.

Moreover, although it was not the primary goal of the study, we evaluated HD-tDCS impact on the set of memory transformations taking place after learning (Dudai et al., 2015). This set of transformations, referred to as memory consolidation, are commonly measured by repeating a task in two sessions separated by a period of time in which participants are not exposed to the task (Robertson et al., 2004).

Thus, in a first session, participants received HD-tDCS above the left or right DLPFC during the TSL. Twenty-four hours later, to evaluate the impact of HD-tDCS on consolidation, participants re-performed the TSL. As neurostimulation of the left DLPFC seems to influence both implicit sequence learning and memory tasks (Pascual-Leone et al., 1996; Javadi and Walsh, 2012; Nikolin et al., 2015), anodal and cathodal left DLPFC HD-tDCS were expected to modulate sequence learning. Similarly, since in the TSL different types of information are integrated together in the same task and the right hemisphere seems dominant in integrating different kinds of information (Geschwind and Galaburda, 1985; Thiebaut de Schotten et al., 2011), anodal and cathodal right DLPFC HD-tDCS were also expected to modulate sequence learning. In addition, because executive functions, such as task switching, are involved in the TSL, and converging results showed the DLPFC to be critically involved in these functions (Miyake et al., 2000; Aron et al., 2004; Tayeb and Lavidor, 2016), here task switching

was taken as a control parameter to evaluate whether the DLPFC was properly stimulated.

EXPERIMENTAL PROCEDURES

Participants and design

Participants were recruited via word of mouth. All participants were right handed, did not self-report past or present psychiatric or neurologic disease, and were not taking psychoactive medications. In total, 96 participants took part to the experiment. We conducted a power analysis with G*Power to obtain the sample size for the present study (Faul et al., 2007; Faul et al., 2009). The effect size was estimated based on HD-tDCS effects on learning rate (η^2 = 0.29) by Nikolin et al. (2015) from which the HD-tDCS protocol was adopted. The power analysis with an alpha of 0.05 and a beta (power) of 0.95, indicated that approximately 72 participants would be needed. All participants gave their written informed consent before the start of the experiment and were blind to the design. Four participants were excluded because they had an accuracy below 80% in blocks in which the sequence was embedded (i.e., blocks 5-12), three participant were excluded because of technical problems. The final sample consisted of 89 participants (25 woman, mean age = 23, SD = 6). The number of participants for each experimental condition was: 16 participants for anodal left DLPFC, 15 for anodal right DLPFC, 16 for cathodal left DLPFC, 11 for cathodal right DLPFC, 16 for sham left DLPFC, and 15 for sham right DLPFC. The experiment had a mixed design, with stimulation type (anodal vs. cathodal vs. sham) and hemisphere (left DLPFC vs. right DLPFC) manipulated between subjects and blocks manipulated within subject. The experiment was conducted in accordance with the Declaration of Helsinki and was approved by the Ethical Committee of the Canton of Bern.

Materials

The TSL paradigm was adopted from Weiermann et al. (2010) (cf. Heuer et al., 2001). The stimuli were the digits 1, 2, 3, 4, 6, 7, 8, 9, and the letters a, e, i, u, c, n, r, s. They were presented in either green or red color on the center of a black background screen in 32-point Arial.

HD-tDCS tDCS was delivered with a DC stimulator plus (neuroConn, Ilmenau, Germany) connected to five round electrodes that had a diameter of 12 mm (mm). The electrodes were compatible with electroencephalography (EEG) caps, meaning that they could be directly inserted in the EEG channels. Fig. 1 depicts the electrodes placements used to stimulate the left and the right DLPFC. For anodal and cathodal stimulation, current was delivered with an intensity of 2 mA (mA) for 20 min. The current was ramped up and down gradually through 30 s (s). For sham, the parameters were the same as in anodal and cathodal except that stimulation lasted 30 s (Nikolin et al., 2018). To reduce impedance, an electro conductive gel was placed directly inside the EEG channels between the surface of the

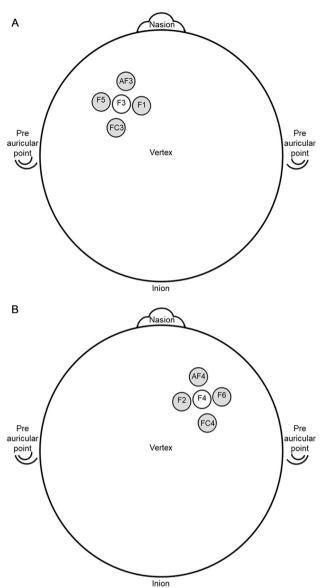


Fig. 1. Electrodes placement used for stimulation of the left (A), and stimulation of the right DLPFC (B). For anodal stimulation, the light gray electrode was the anode and the four dark gray electrodes cathodes. For cathodal stimulation, the light gray electrode was the cathode and the four dark gray electrodes anodes.

electrodes and the scalp. Impedance was kept below 10 k-Ohms ($k\Omega$).

Procedure

Fig. 2 depicts the procedure. In Session 1, HD-tDCS was installed on participants' head. Afterwards, participants received the instructions in which it was written that they would perform a simple reaction time task. The TSL procedure was identical to the initial study, that is, with bimanual responses. Participants were instructed to respond as fast and accurate as possible and were not informed about the presence of a sequence. The task consisted of deciding whether a number was smaller (1, 2, 3, 4) or bigger than five

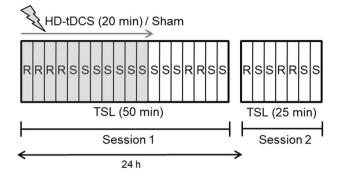


Fig. 2. Experimental procedure. In the TSL, "R" stands for random block and "S" for sequenced block. The blocks colored in gray represent ongoing HD-tDCS.

(6, 7, 8, 9), or whether a letter was a vowel (a, e, i, u) or a consonant (c, n, r, s). In addition, the color of the stimuli determined the response mapping. Green was compatible and red incompatible response mapping. Compatible response mapping indicated pressing keyboard button "1" with the left index finger for digits smaller than five and vowels, and pressing keyboard button "5" with the right index finger for digits bigger than five and consonants. Incompatible response mapping was the opposite, therefore pressing keyboard button "1" with the left index finger for digits bigger than five and consonants, and keyboard button "5" with the right index finger for digits smaller than five and vowels. Compatible response mapping was indicated by fixed instructional reminders displayed in white color and in 26-point Arial font on the left and right of the stimuli. Fig. 3 depicts two examples of trials. Sixteen eight-element sequences of task type (digit vs. letter) and response mapping (compatible vs. incompatible mapping) combinations were created according to Heuer et al., (2001). Each combination consisted of the four possible trial-to-trial relations (task type repeated vs. task type switched and response mapping repeated vs. response mapping switched). It is important to stress that in the TSL the order of responses and stimuli features is random and, thus, sequence learning in the TSL is based on a sequence of tasks rather than a sequence of motor responses (Weiermann et al., 2010). Each participant trained with one of these sequences. After making sure that participants understood the instructions, HD-tDCS was given either for 30 s (i.e., sham) or for 20 min (i.e., actual). At the end of Session 1, participants were asked to rate the pain and unpleasantness felt during HD-tDCS. Pain was rated on a scale from "0" (e.g., "I feel no pain") to "10" (e.g., "I cannot continue the task because of pain"), for each point of the scale a corresponding description was available. Unpleasantness was rated on a scale from "1" (i.e., very pleasant) to "6" (i.e., very unpleasant) with "4" indicating a neutral sensation.

Eighteen blocks composed Session 1. Blocks 1–4 were practice blocks in which a pseudorandom order of task type-response mapping combinations was presented (see Supplementary material S1 for complete description on how the pseudorandom order was created). Blocks 5–14 were sequenced blocks, in which an eight-element

Fig. 3. Two trials of the TSL (Weiermann et al., 2010). The actual background was black. Instructions reminders, indicating compatible response mapping, were constantly presented left and right from the stimuli. The correct response for "3" green was pressing keyboard button "1" with the left index finger. The correct response for "a" red was pressing keyboard button "5" with the right index finger (see text for details). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

sequence of task type-response mapping combinations was presented. In blocks 15 and 16 the sequence was changed to pseudorandom. In blocks 17 and 18 the sequence was re-established. In each sequenced block the eight-elements sequence was repeated 13 times resulting in 104 trials. In each trial a digit or a letter, either in green or red color, would appear on the screen. The stimulus remained on the screen until one of the two response buttons (i.e., keyboard button "1" or "5") was pressed. The inter-stimulus interval was 200 milliseconds (ms).

Seven blocks composed Session 2. Block one was pseudorandom followed by two sequenced blocks, two pseudorandom blocks, and two sequenced blocks. The TSL was programed with E-Prime version 2.0 (Psychology Software Tools, Pittsburgh, PA).

At the end of session 2 participants were informed that there was a repeating sequence of task type-response mapping combinations embedded. They were asked whether they noticed something and to guess a sequence. The number of consecutive elements reproduced was used as a measure of explicit knowledge. Additionally, participants were informed that there were two conditions of stimulation (i.e., actual and sham), and were asked to guess which one they received.

Data analysis

The first trial of each block, trials in which an error was committed, trials after an error, and trials with reaction times (RTs) lower than 100 ms were excluded from the analysis. Sequence learning was measured by calculating disruption scores. For Session 1, disruption scores were the mean RTs of pseudorandom blocks 15 and 16 minus the mean RTs of sequenced blocks 13, 14, 17, and 18, For Session 2, disruption scores were the mean RTs of pseudorandom blocks 4 and 5 minus the mean RTs of sequenced blocks 2. 3. 6. and 7. Thus, large disruption scores indicated large RTs increases in pseudorandom blocks 15-16 and 4-5 of Session 1 and 2, respectively. Consolidation was evaluated by comparing the disruption scores of the two sessions. Task switching was measured in switch costs that are the RTs difference between trials in which the task was switched and trials in which it was repeated (Rogers and Monsell, 1995; Heuer et al., 2001). The switch costs analysis was restricted to pseudorandom blocks 15-16 and 4-5 in Session 1 and 2, respectively. Additional analyses were conducted on the reported level of pain and unpleasantness, on the explicit knowledge test, and on participants' guess regarding which stimulation condition they received (actual vs. sham). For all statistical analysis an alpha value of 0.05 was used. Effect sizes are indicated in partial n². Due to violations of normality, the data were log-transformed (Whelan, 2008). Levene's tests of equality indicated that the homogeneity of variances assumption was met.

RESULTS

Sequence learning and consolidation

Fig. 4 depicts RTs across all blocks for each experimental condition. During blocks 5 to 12 there was a continuous decrease in RTs reflecting a general learning effect. When the sequence order was switching to pseudorandom, performance slowed down which is an indirect indication of sequence learning. A similar pattern of disruption was found in Session 2. In order to analyze sequence learning and consolidation across HD-tDCS conditions we performed a mixed analysis of variance (ANOVA) on the disruption scores with the two sessions as within subject factor and stimulation type (anodal vs. cathodal vs. sham) and hemisphere (left DLPFC vs. right DLPFC) as between subjects factors. The ANOVA revealed no significant result (Ps > .086) (see Table 1, top half) indicating that disruption scores did not change across sessions and that HD-tDCS influenced neither sequence learning nor consolidation. Fig. 5 depicts the disruption scores of both sessions for each experimental condition. T-tests revealed that the grand means of the disruption scores were significantly differed from zero, t (88) = 7.64, P < .001 and t (88) = 10.10, P < .001 for Session 1 (77 ms; SE = 9) and 2 (58 ms; SE = 6), respectively.

As sample size influences heavily *P*-values, the null findings reported above were not able to disentangle whether the null hypothesis was true or the evidence inconclusive (Biel and Friedrich, 2018). In other words, the analysis conducted so far could not give any insight on the genuineness of the null findings. To explore this critical point, we conducted Bayesian statistics to compute the probability of H₁ and H₀ (Dienes, 2011; Biel and Friedrich, 2018). The free software JASP (Wagenmakers et al., 2018, Version 0.8.6.0; cf.

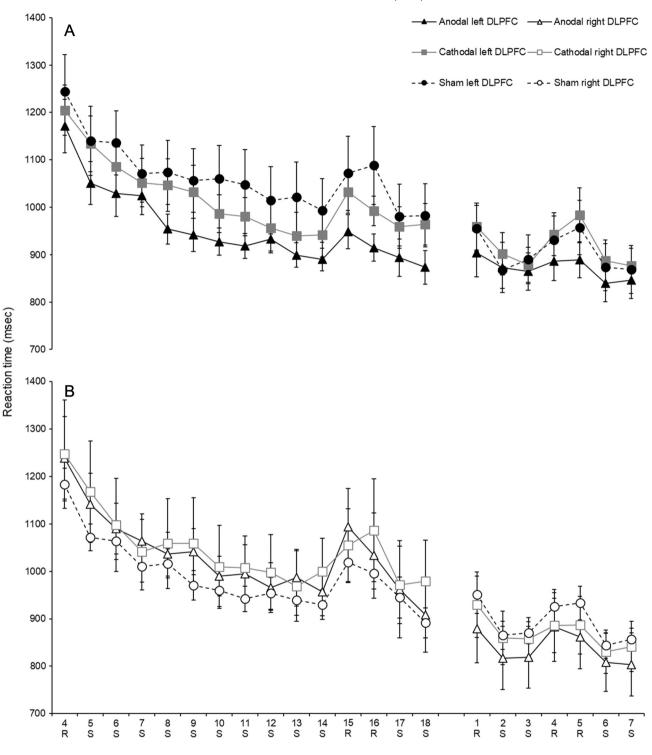


Fig. 4. RT trajectories across blocks. "A" and "B" depict left and right DLPFC conditions, respectively. "R" = random block; "S" = sequenced block. Bars represent standard errors.

2017) was used to calculate Bayes Factors (*B*). *B* values indicate the probability of H_1 relative to H_0 (Wagenmakers et al., 2017). A *B* above 3 indicates evidence for H_1 ; a *B* below 1/3 indicates evidence for H_0 ; importantly, all values between 1/3 and 3 indicate data insensitivity to distinguish the hypotheses (Dienes, 2014). A Bayesian mixed ANOVA on the disruption scores with the two sessions as within subject factor and

stimulation type (anodal vs. cathodal vs. sham) and hemisphere (left DLPFC vs. right DLPFC) as between subjects factors indicated support for the null hypothesis as all *B*s were below 1/3 (see Table 2 top half). Therefore, the Bayesian analysis supported the findings that disruption scores did not change across sessions and HD-tDCS did not influence sequence learning and consolidation. Switch costs

Table 1. Outputs of the mixed ANOVAs conducted to evaluate HD-
tDCS effects on disruption scores and switch cost.

Source	df	MSE	F	Ρ	Partial η2
Disruption scores					
Between-Subjects					
Stimulation type	2	0.000	0.415	.662	0.010
Hemisphere	1	0.001	1.015	.317	0.012
Stimulation type * Hemisphere	2	0.002	1.504	.228	0.035
Error	83	0.001			
Within-Subject					
Sessions	1	0.001	1.295	.258	0.015
Sessions * Stimulation type	2	0.000	0.377	.687	0.009
Sessions * Hemisphere	1	0.002	3.013	.086	0.035
Sessions * Stimulation type	2	0.000	0.473	.625	0.011
* Hemisphere	2	0.000	0.475	.025	0.011
Error (Sessions)	83	0.001			
Switch costs					
Between-Subjects					
Stimulation type	2	0.002	0.768	.467	0.018
Hemisphere	1	0.000	0.068	.795	0.001
Stimulation type * Hemisphere	2	0.001	0.442	.644	0.011
Error	83	0.002			
Within-Subject					
Sessions	1	0.008	7.786	.007	0.086
Sessions * Stimulation type	2	0.001	0.676	.511	0.016
Sessions * Hemisphere	1	0.002	1.813	.182	0.021
Sessions * Stimulation type * Hemisphere	2	0.002	1.758	.179	0.041
Error (Sessions)	83	0.001			

A mixed ANOVA with the switch costs of the two sessions

as within subject factor and stimulation type (anodal vs.

cathodal vs. sham) and hemisphere (left DLPFC vs. right

Table 2. . JASP output table of the Bayesian ANOVAs.

Effects	P(incl)	P(incl data)	BF Inclusion
Disruption scores			
Sessions	.737	.242	0.114
Stimulation type	.737	.133	0.055
Hemisphere	.737	.317	0.165
Sessions * Stimulation type	.316	.005	0.010
Sessions * Hemisphere	.316	.046	0.105
Stimulation type * Hemisphere	.316	.016	0.035
Sessions * Stimulation type * Hemisphere	.053	.000	0.002
Switch costs			
Sessions	.263	.734	4.256
Stimulation type	.263	.152	0.188
Hemisphere	.263	.171	0.227
Sessions * Stimulation type	.263	.028	0.210
Sessions * Hemisphere	.263	.067	0.457
Stimulation type * Hemisphere	.263	.010	0.230
Sessions * Stimulation type * Hemisphere	.053	.000	0.659

Note. P(incl) = prior inclusion probability, <math>P(incl|data) = posterior inclusion probability, BF Inclusion = Bayes Factor (i.e., change from prior to posterior inclusion).

DLPFC) as between subjects factors revealed only a main effect of switch costs *F* (1, 83) = 7.78, *P* < .05, ² = 0.086 (see Table 1 bottom half), an indication that switch costs decreased across sessions (task switch costs Session 1 = 127 ms, *SE* = 19; task switch costs Session 2 = 75, *SE* = 10). T-tests revealed that these switch costs significantly differed from zero, *t* (88) = 9.20, *P* < .001 and *t* (88) = 8.70, *P* < .001 for Session 1 and 2, respectively.

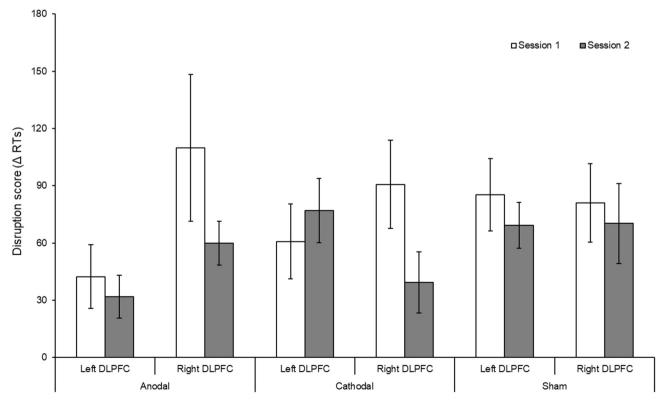


Fig. 5. Disruption scores separately for Session 1 and Session 2 and each experimental condition, respectively. Bars represent standard errors.

Due to the non-significant effects of HD-tDCS, switch costs were analyzed with a Bayesian mixed ANOVA with the two sessions as within subject factor and stimulation type (anodal vs. cathodal vs. sham) and hemisphere (left DLPFC vs. right DLPFC) as between subjects factors. The main effect of switch costs produced a high *B* (4.256) indicating evidences for the alternative hypothesis. Most relevant, the *B*s regarding HD-tDCS effects were smaller than 1/3 and between 1/3 and 3 (see Table 2 bottom half), indicating suggestive evidence for the null hypothesis. Thus, the Bayesian analysis supported the findings that switch costs decreased across sessions and there was no influence of HD-tDCS.

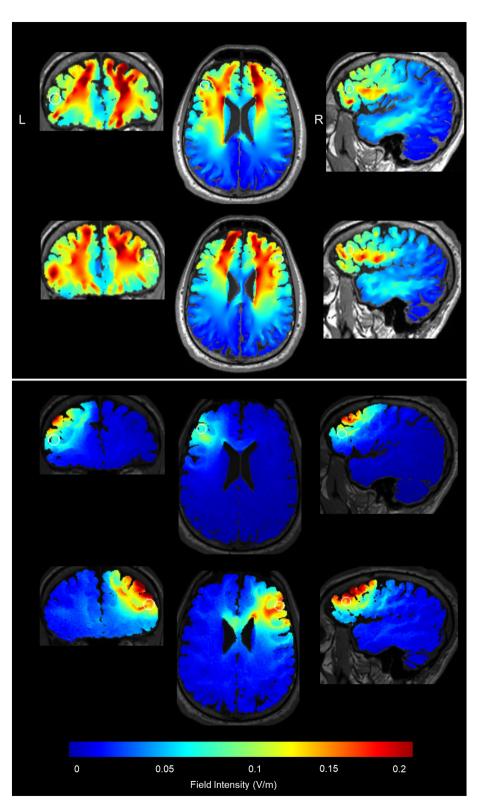
Additional results

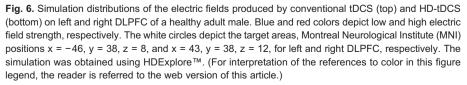
One participant did not rate the pain and participants did not rate unpleasantness felt during HD-tDCS. The mean reported level of pain was 1.7 (SD = 1.5) and 0.7 (SD = 1) for actual and sham tDCS, respectively. An independentsamples *t*-test revealed that the level of reported pain was higher when actual tDCS was given compared to sham, *t* (82) = 3.58, P = .001. The level of reported unpleasantness was 4.1 (SD = 1.2) and 4 (SD = 1.1) for actual and sham tDCS, respectively. An independent-samples *t*-test showed no significant difference between actual and sham tDCS (P = .7).

One participant did not complete the explicit knowledge test at the end of the experiment. The mean number of correctly generated elements of the sequence was 3.5 (SD = 1.6), 3.4 (SD = 1.6), 3.1 (SD = 1), 3.2 (SD = 1.3), 3.2 (SD = 1), and 3.7 (SD = 1) for anodal right DLPFC, anodal left DLPFC, cathodal right DLPFC, cathodal right DLPFC, cathodal left DLPFC, sham right DLPFC, and sham left DLPFC, respectively. A two-factorial ANOVA with the between subject factors stimulation type (anodal vs. cathodal vs. sham) and hemisphere (left DLPFC vs. right DLPFC) showed no significant effect (Ps > .6). Participants who generated more than four elements were suspected of having explicit knowledge of the sequence. In total, 13 participants generated more than four elements. Excluding these participants did not change the sequence learning effects.

When asked whether they thought that they were in the actual stimulation condition or not, the same number of participants guessed correctly and wrongly (i.e., 43 participants), indicating that blinding was successful and that the judgment was on chance level.

DISCUSSION


Patients with DLPFC lesions are strongly impaired in implicit TSL. However, recent results showed that conventional tDCS of the DLPFC does not modulate task sequence learning and consolidation (Savic et al., 2017b). As HDtDCS is more precise than conventional tDCS, we expected that DLPFC HD-tDCS would modulate TSL performance. In order to maximize the chances of stimulation effects, we applied an HD-tDCS protocol that successfully modulated DLPFC activity and learning in previous studies (Nikolin et al., 2015; Chua and Ahmed, 2016). Nevertheless, the results showed no DLPFC HD-tDCS influence on performance. Sequence learning was present in both sessions and across all conditions, corroborating the finding that implicit learning of abstract sequences of tasks is robust and it can be reliably measured with the TSL (Meier and Cock, 2010).


Notably, a post-hoc computer simulation of the electric fields produced by the conventional tDCS-montage used in our previous studies (Savic et al., 2017a; Savic et al., 2017b) and by the HD-tDCS montage used in the present study (Dmochowski et al., 2011; Kempe et al., 2014) shows that, compared to conventional tDCS, the electric fields produced by HD-tDCS were circumscribed to the area of the DLPFC (see Fig. 6). Moreover, according to Fig. 6, the electric field strength reached above the left and right DLPFC during HD-tDCS was 0.087 V (V)/meters (m) and 0.107 V/m, respectively. The parameter that most probably produced these electric fields strengths is the position of the return electrodes. Indeed, a recent study published after the present one was conducted, showed no DLPFC HD-tDCS effects on memory and attention (Nikolin et al., 2019). Critically, the authors used the same protocol as the present study, and one of the interpretation was that the space between the electrodes was too small (see Fig. 1). This interpretation is supported by modeling results suggesting that the position of the return electrodes is critical for the efficacy of stimulation (Bikson et al., 2010; Kabakov et al., 2012), and that more distance between the electrodes increases electric field strength and reduces focality (Alam et al., 2016). Thus, the present null findings may have been provoked by the electric field strengths that, in turn, are dependent from the position of the return electrodes.

This interpretation is partially corroborated by the lack of effects on switch costs. Actually, patients and neuroimaging data suggested a critical involvement of the DLPFC in the ability to switch between tasks (Aron et al., 2004; Tayeb and Lavidor, 2016). Nonetheless, previous results showed that DLPFC involvement might be apparent only at lower statistical thresholds (Wager et al., 2004). In addition, changes in paradigm parameters seem to activate different parts of the network involved in task switching (Witt and Stevens, 2013). Therefore, it might be that DLPFC HD-tDCS did not influence switch costs because task switching, in the TSL, did not sufficiently engage the DLPFC.

The insufficiency of HD-tDCS and TSL alone, or the combination of both to engage the DLPFC is supported from the Bayesian analysis. The latter showed that in most cases the results favored the null over the alternative hypothesis, suggesting an unsuccessful stimulation protocol or an unsuccessful combination of stimulation protocol and task (Biel and Friedrich, 2018). By combining tDCS with neuroimaging and electrophysiological methods (e.g., Romero Lauro et al., 2016; Pisoni et al., 2018; Varoli et al., 2018), future studies should investigate the cortical reactivity induced by the combination of the present protocol and task.

In the same vein, future studies could probe whether stimulation of other brain areas might modulate TSL

performance. For example, converging results showed that the cerebellum contributes to motor and non-motor aspects of behavior (Stoodley and Schmahmann. 2009; Timmann et al., 2010; Caligiore et al., 2016). Moreover, modeling results suggested that the cerebellum seems particularly responsive to tDCS (Rampersad et al., 2014), and its stimulation seems to influences perception, learning, and memory (Ferrucci and Priori, 2014; Grimaldi et al., 2016; Jongkees et al., 2019). Thus, there are sufficient evidences indicating that cerebellar tDCS could modulate TSL performance. Likewise, since the primary motor cortex (M1) seems to be as well particularly responsive to tDCS compared to other cortical areas (Radman et al., 2009; cf. Savic and Meier, 2016), and the TSL requires a motor response. M1 tDCS could influence TSL performance.

Although investigating consolidation of the TSL per se was not the main goal of the study, the present results are important. In line with previous findings, the results showed that memory traces of sequences in the TSL are maintained across sessions (Savic et al., 2017a; Savic et al., 2017b). This contrasts to a prominent model based on neuroimaging data suggesting that consolidation of abstract sequences should result in improvement rather than maintenance (Albouy et al., 2013; Albouy et al., 2015). To widen our understanding of consolidation taking place after sequence learning, future studies should investigate consolidation trajectories for different kinds of sequences (cf. Meier and Cock, 2014).

In conclusion, previous results showed that conventional tDCS does not influence TSL performance probably due to its non-focal effect. The present study extends these findings by showing that even a more focal stimulation method of the DLPFC, namely HD-tDCS, was not sufficient to influence implicit learning and consolidation of abstract sequences of tasks.

ACKNOWLEDGMENTS

We thank Denise Jakob, Anna Lea Schindler, Lorena Ragonesi, Muriel Grindat, Stephanie Heule, Josua Santana Wälti, Plinio Tettamani, Fabio Bilder, David Celmencio, Lorenz Egger, Hannes Seifert, and Leo Bechtel for data collection.

DISCLOSURE STATEMENT

No potential conflicts of interest were reported from the authors.

REFERENCES

- Abrahamse EL, Jiménez L, Verwey WB, Clegg BA. (2010) Representing serial action and perception. Psychon Bull Rev 17(5):603-623, https://doi.org/10.3758/PBR.17.5.603.
- Alam M, Truong DQ, Khadka N, Bikson M. (2016) Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol 61(12):4506-4521, https://doi. org/10.1088/0031-9155/61/12/4506.
- Albouy Geneviève, King BR, Maquet P, Doyon J. (2013) Hippocampus and striatum: dynamics and interaction during acquisition and sleeprelated motor sequence memory consolidation. Hippocampus 23 (11):985-1004, https://doi.org/10.1002/hipo.22183.
- Albouy Genevieve, Fogel S, King BR, Laventure S, Benali H, Karni A, Doyon J. (2015) Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. NeuroImage 108:423-434, https://doi.org/10.1016/j.neuroimage.2014.12.049.
- Aron AR, Monsell S, Sahakian BJ, Robbins TW. (2004) A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain 127(7):1561-1573, https://doi.org/10.1093/ brain/awh169.
- Biel AL, Friedrich EVC. (2018) Why you should report Bayes factors in your transcranial brain stimulation studies. Front Psychol 9, https:// doi.org/10.3389/fpsyg.2018.01125.
- Bikson M, Datta A, Rahman A, Scaturro J. (2010) Electrode montages for tDCS and weak transcranial electrical stimulation: role of "return" electrode's position and size. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology 121(12):1976-1978, https://doi.org/10.1016/j.clinph.2010.05.020.
- Bikson M, Rahman A, Datta A. (2012) Computational models of transcranial direct current stimulation. Clin EEG Neurosci 43(3):176-183, https://doi.org/10.1177/1550059412445138.
- Caligiore, D., Pezzulo, G., Baldassarre, G., Bostan, A. C., Strick, P. L., Doya, K., ... Herreros, I. (2016). Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. The cerebellum, 1–27. https:// doi.org/10.1007/s12311-016-0763-3.
- Chua EF, Ahmed R. (2016) Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring. Neuropsychologia 85:74-79, https://doi.org/10.1016/j.neuropsychologia.2016.03.008.
- Chua EF, Ahmed R, Garcia SM. (2017) Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty. Brain Stimul 10(2):231-241, https://doi.org/10.1016/j. brs.2016.10.013.
- Cleeremans A, Destrebecqz A, Boyer M. (1998) Implicit learning: news from the front. Trends Cogn Sci 2(10):406-416, https://doi.org/ 10.1016/S1364-6613(98)01232-7.
- Datta A, Elwassif M, Battaglia F, Bikson M. (2008) Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng 5(2):163, https://doi.org/10.1088/ 1741-2560/5/2/007.
- Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. (2009) Gyri precise head model of transcranial DC stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad.

Brain Stimul 2(4):201-207, https://doi.org/10.1016/j. brs.2009.03.005.

- Dedoncker J, Brunoni AR, Baeken C, Vanderhasselt M-A. (2016) A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimul 9(4):501-517, https://doi.org/10.1016/j. brs.2016.04.006.
- Dienes Z. (2011) Bayesian versus orthodox statistics: which side are you on? Perspectives on Psychological Science 6(3):274-290, https://doi.org/10.1177/1745691611406920.
- Dienes Z. (2014) Using Bayes to get the most out of non-significant results. Front Psychol 5, https://doi.org/10.3389/fpsyg.2014.00781.
- Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. (2011) Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng 8(4)046011, https://doi.org/10.1088/1741-2560/8/4/ 046011.
- Dudai Y, Karni A, Born J. (2015) The consolidation and transformation of memory. Neuron 88(1):20-32, https://doi.org/10.1016/j. neuron.2015.09.004.
- Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M. (2013) Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. NeuroImage 74:266-275, https://doi.org/10.1016/j. neuroimage.2013.01.042.
- Faul F, Erdfelder E, Lang A-G, Buchner A. (2007) G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175-191, https://doi. org/10.3758/BF03193146.
- Faul F, Erdfelder E, Buchner A, Lang A-G. (2009) Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149-1160, https://doi.org/ 10.3758/BRM.41.4.1149.
- Ferrucci R, Priori A. (2014) Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. NeuroImage, 85. Part 3:918-923, https://doi.org/10.1016/j. neuroimage.2013.04.122.
- Geschwind N, Galaburda AM. (1985) Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research Archives of Neurology 42(5):428-459.
- Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, Celnik P. (2016) Cerebellar transcranial direct current stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. Neuroscientist 22(1):83-97, https://doi.org/ 10.1177/1073858414559409.
- Hardwick RM, Rottschy C, Miall RC, Eickhoff SB. (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuro-Image 67:283-297, https://doi.org/10.1016/j.neuroimage.2012.11.020.
- Hazeltine E, Grafton ST, Ivry R. (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 120(1):123-140, https://doi.org/10.1093/brain/120.1.123.
- Heuer H, Schmidtke V, Kleinsorge T. (2001) Implicit learning of sequences of tasks. J Exp Psychol Learn Mem Cogn 27(4):967-983, https://doi.org/10.1037/0278-7393.27.4.967.
- Honda M, Deiber MP, Ibáñez V, Pascual-Leone A, Zhuang P, Hallett M. (1998) Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study Brain 121(11):2159-2173, https:// doi.org/10.1093/brain/121.11.2159.
- Horvath JC, Carter O, Forte JD. (2016) No significant effect of transcranial direct current stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation protocols. Neuropsychologia 91:544-552, https://doi.org/10.1016/j.neuropsychologia.2016.09.017.
- Javadi AH, Walsh V. (2012) Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory. Brain Stimul 5(3):231-241, https://doi.org/10.1016/j. brs.2011.06.007.
- Jongkees B.J., Immink M.A., Boer O.D., et al. (2019) Cerebellum https://doi.org/10.1007/s12311-019-01029-1.
- Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. (2012) Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation

in isolated rat hippocampus. J Neurophysiol 107(7):1881-1889, https://doi.org/10.1152/jn.00715.2011.

- Kemény F, Meier B. (2016) Multimodal sequence learning. Acta Psychol (Amst) 164:27-33, https://doi.org/10.1016/j.actpsy.2015.10.009.
- Kempe R, Huang Y, Parra LC. (2014) Simulating pad-electrodes with high-definition arrays in transcranial electric stimulation. J Neural Eng 11(2)026003, https://doi.org/10.1088/1741-2560/11/2/026003.
- Krause B, Márquez-Ruiz J, Kadosh RC. (2013) The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7, https://doi.org/10.3389/fnhum.2013.00602.
- Kuo HI, Bikson M, Datta A, Minhas P, Paulus W, Kuo M, Nitsche MA. (2013) Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul 6(4):644-648, https://doi.org/10.1016/j.brs.2012.09.010.
- Lukasik KM, Lehtonen M, Salmi J, Meinzer M, Joutsa J, Laine M. (2018) No effects of stimulating the left ventrolateral prefrontal cortex with tDCS on verbal working memory updating. Front Neurosci 11, https://doi.org/10.3389/fnins.2017.00738.
- Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. (2016) Does transcranial direct current stimulation improve healthy working memory?: a meta-analytic review. J Cogn Neurosci 28(8):1063-1089, https:// doi.org/10.1162/jocn_a_00956.
- Medina J, Cason S. (2017) No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex 94:131-141, https://doi. org/10.1016/j.cortex.2017.06.021.
- Meier B, Cock J. (2010) Are correlated streams of information necessary for implicit sequence learning? Acta Psychol (Amst) 133 (1):17-27, https://doi.org/10.1016/j.actpsy.2009.08.001.
- Meier B, Cock J. (2014) Offline consolidation in implicit sequence learning. Cortex 57:156-166, https://doi.org/10.1016/j.cortex.2014.03.009.
- Meier, B., & Sauter, P. (2018). Boosting memory by tDCS to frontal or parietal brain regions? A study of the enactment effect shows no effects for immediate and delayed recognition. Frontiers in psychology, 9. https://doi.org/10.3389/fpsyg.2018.00867.
- Meier B, Weiermann B, Gutbrod K, Stephan MA, Cock J, Müri RM, Kaelin-Lang A. (2013) Implicit task sequence learning in patients with Parkinson's disease, frontal lesions and amnesia: the critical role of fronto-striatal loops. Neuropsychologia 51(14):3014-3024, https://doi.org/10.1016/j.neuropsychologia.2013.10.009.
- Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. (2000) The Unity and Diversity of executive functions and their contributions to complex "frontal lobe" tasks: a latent variable analysis. Cogn Psychol 41(1):49-100, https://doi.org/10.1006/cogp.1999.0734.
- Nasseri P, Nitsche MA, Ekhtiari H. (2015) A framework for categorizing electrode montages in transcranial direct current stimulation. Front Hum Neurosci 9, https://doi.org/10.3389/fnhum.2015.00054.
- Nikolin S, Loo CK, Bai S, Dokos S, Martin DM. (2015) Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. NeuroImage 117:11-19, https://doi.org/10.1016/j. neuroimage.2015.05.019.
- Nikolin S, Martin D, Loo CK, Boonstra TW. (2018) Effects of TDCS dosage on working memory in healthy participants. Brain Stimul 11(3):518-527, https://doi.org/10.1016/j.brs.2018.01.003.
- Nikolin, S., Lauf, S., Loo, C. K., & Martin, D. (2019). Effects of highdefinition transcranial direct current stimulation (HD-tDCS) of the intraparietal sulcus and dorsolateral prefrontal cortex on working memory and divided attention. Frontiers in integrative neuroscience, 12. https://doi.org/10.3389/fnint.2018.00064.
- Nitsche MA, Paulus W. (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633-639, https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.
- Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. (2003) Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 15(4):619-626, https://doi.org/10.1162/ 089892903321662994.
- Nyberg L, Marklund P, Persson J, Cabeza R, Forkstam C, Petersson KM, Ingvar M. (2003) Common prefrontal activations during working

memory, episodic memory, and semantic memory. Neuropsychologia 41(3):371-377, https://doi.org/10.1016/S0028-3932(02)00168-9.

- Pascual-Leone A, Wassermann EM, Grafman J, Hallett M. (1996) The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res 107(3):479-485.
- Peigneux P, Maquet P, Meulemans T, Destrebecqz A, Laureys S, Degueldre C, Cleeremans A. (2000) Striatum forever, despite sequence learning variability: a random effect analysis of PET data. Hum Brain Mapp 10(4):179-194, https://doi.org/10.1002/1097-0193 (200008)10:4<179::AID-HBM30>3.0.CO;2-H.
- Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Lauro R, J, L. . (2018) Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex 28(4):1132-1140, https://doi.org/10.1093/cercor/bhx021.
- Pixa NH, Steinberg F, Doppelmayr M. (2017) High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neurosci Lett 643:84-88, https://doi.org/10.1016/j.neulet.2017.02.033.
- Polanía R, Nitsche MA, Ruff CC. (2018) Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 1, https://doi.org/10.1038/s41593-017-0054-4.
- Radman T, Ramos RL, Brumberg JC, Bikson M. (2009) Role of cortical cell type and morphology in sub- and Suprathreshold uniform electric field stimulation. Brain Stimul 2(4):215-228, https://doi.org/ 10.1016/j.brs.2009.03.007.
- Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S, Oostendorp TF. (2014) Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng 22(3):441-452, https://doi.org/10.1109/ TNSRE.2014.2308997.
- Robertson EM, Pascual-Leone A, Miall RC. (2004) Current concepts in procedural consolidation. Nat Rev Neurosci 5(7):576-582, https:// doi.org/10.1038/nrn1426.
- Rogers RD, Monsell S. (1995) Costs of a predictable switch between simple cognitive tasks. J Exp Psychol Gen 124(2):207-231, https:// doi.org/10.1037/0096-3445.124.2.207.
- Romero Lauro LJ, Pisoni A, Rosanova M, Casarotto S, Mattavelli G, Bolognini N, Vallar G. (2016) Localizing the effects of anodal tDCS at the level of cortical sources: a reply to bailey et al., 2015. Cortex 74:323-328, https://doi.org/10.1016/j.cortex.2015.04.023.
- Savic B, Meier B. (2016) How transcranial direct current stimulation can modulate implicit motor sequence learning and consolidation: a brief review. Front Hum Neurosci 10, https://doi.org/10.3389/ fnhum.2016.00026.
- Savic B, Cazzoli D, Müri R, Meier B. (2017) No effects of transcranial DLPFC stimulation on implicit task sequence learning and consolidation. Sci Rep 7(1):9649, https://doi.org/10.1038/s41598-017-10128-0.
- Savic B, Müri R, Meier B. (2017) A single session of prefrontal cortex transcranial direct current stimulation does not modulate implicit task sequence learning and consolidation. Brain Stimul 10(3):567-575, https://doi.org/10.1016/j.brs.2017.01.001.
- Stoodley CJ, Schmahmann JD. (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44 (2):489-501, https://doi.org/10.1016/j.neuroimage.2008.08.039.
- Tayeb Y, Lavidor M. (2016) Enhancing switching abilities: improving practice effect by stimulating the dorsolateral pre frontal cortex. Neuroscience 313:92-98, https://doi.org/10.1016/j. neuroscience.2015.11.050.
- Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell'Acqua F, Allin M, Walshe M, Catani M. (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. NeuroImage 54(1):49-59, https://doi.org/ 10.1016/j.neuroimage.2010.07.055.
- Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, Kolb FP. (2010) The human cerebellum contributes to motor, emotional and cognitive associative learning. A review Cortex 46 (7):845-857, https://doi.org/10.1016/j.cortex.2009.06.009.
- Tremblay S, Larochelle-Brunet F, Lafleur L-P, El Mouderrib S, Lepage J-F, Théoret H. (2016) Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary

motor cortex excitability. European Journal of Neuroscience, n/a-n/a 44(5):2184-2190.

- Varoli E, Pisoni A, Mattavelli GC, Vergallito A, Gallucci A, Mauro LD, J, L. . (2018) Tracking the effect of cathodal transcranial direct current stimulation on cortical excitability and connectivity by means of TMS-EEG. Front Neurosci 12, https://doi.org/10.3389/fnins.2018.00319.
- Vignaud P, Mondino M, Poulet E, Palm U, Brunelin J. (2018) Duration but not intensity influences transcranial direct current stimulation (tDCS) after-effects on cortical excitability. Neurophysiol Clin 48 (2):89-92, https://doi.org/10.1016/j.neucli.2018.02.001.
- Wagenmakers, E.-J., Verhagen, J., Ly, A., Matzke, D., Steingroever, H., Rouder, J. N., & Morey, R. D. (2017). The need for Bayesian hypothesis testing in psychological science. In psychological science under scrutiny (pp. 123–138). https://doi.org/10.1002/9781119095910.ch8.
- Wagenmakers E-J, Love J, Marsman M, Jamil T, Ly A, Verhagen J, Morey RD. (2018) Bayesian inference for psychology. Part II: example applications with JASP. Psychon Bull Rev 25(1):58-76, https:// doi.org/10.3758/s13423-017-1323-7.
- Wager TD, Jonides J, Reading S. (2004) Neuroimaging studies of shifting attention: a meta-analysis. NeuroImage 22(4):1679-1693, https://doi.org/10.1016/j.neuroimage.2004.03.052.

- Weiermann B, Cock J, Meier B. (2010) What matters in implicit task sequence learning: perceptual stimulus features, task sets, or correlated streams of information? Journal of experimental psychology. Learning, Memory, and Cognition 36(6):1492-1509, https://doi.org/ 10.1037/a0021038.
- Westwood SJ, Romani C. (2017) Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: a meta-analysis of single session tDCS applied to healthy participants. Neuropsychologia 104:234-249, https://doi.org/10.1016/j. neuropsychologia.2017.07.031.
- Whelan R. (2008) Effective analysis of reaction time data. The Psychological Record 58(3):475-482, https://doi.org/10.1007/ BF03395630.
- Witt ST, Stevens MC. (2013) fMRI task parameters influence hemodynamic activity in regions implicated in mental set switching. NeuroImage 65:139-151, https://doi.org/10.1016/j. neuroimage.2012.09.072.
- Zito GA, Senti T, Cazzoli D, Müri RM, Mosimann UP, Nyffeler T, Nef T. (2015) Cathodal HD-tDCS on the right V5 improves motion perception in humans. Frontiers in Behavioral Neuroscience 9, https://doi. org/10.3389/fnbeh.2015.00257.
- (Received 18 February 2019, Accepted 25 June 2019) (Available online 04 July 2019)