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ABSTRACT

Recent research has suggested that sequences of tasks can be learned implicitly. One
explanation rests on the automatic activation of task sets. Alternative possibilities include
perceptual learning of the sequence of task cues, or the learning of the combined
correlated stream of task cues and tasks. To test these possibilities we manipulated the
stimulus valency of the tasks. In Experiment 1, univalent stimuli were used and the
presence/absence of instructional task cues was varied. Results showed a small but non-
significant effect of task sequence learning. In Experiment 2, bivalent and trivalent
stimuli were used instead of univalent stimuli and by design instructional task cues were
necessary. Task sequence learning effects were found but were only significant for
trivalent stimuli. Results suggest that the presence of a sequence of task cues must be
attended in order to be effective.

INTRODUCTION

Predictability in an environment depends on specific relations between events and the
ordering of events. The stimuli involved seldom occur purely by chance. Typically, they
follow a preexisting order. Sensitivity to a structured order enables an organism to be
prepared and ready for action when a particular configuration of stimuli is encountered.
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Understanding how people can be sensitive to their environment, especially without
awareness, 1s one of the reasons why implicit sequence learning has attracted the attention of
researchers (Ebbinghaus, 1902; Lashley, 1951; Nissen and Bullemer, 1987).

Recent research has shown that implicit learning of environmental structure may extend
beyond sensitivity to a sequence of stimuli. For example, Koch (2001) investigated task
sequence learning and suggested that learning depended on automatic task set activation.
However, because the same stimuli were used for all the tasks, instructional cues were
necessary to indicate which task to perform. By design the tasks were correlated with the
sequence of instructional cues. Therefore, alternative explanations might include perceptual
learning of the sequence of task cues, or the learning of the combined correlated stream of
task cues and tasks. The purpose of the present study is to examine the role of cues and
stimulus valency in task sequence learning. Stimulus valency refers to the number of stimulus
dimensions relevant to performance of a task in a specific context.

Koch (2001) used a sequence of stimuli that each differed on three dimensions (form,
colour, and size; 1.e., trivalent stimuli) to test whether a task set (i.e., the intention to perform
a particular task) can be activated automatically. In order for participants to know which task
they needed to perform next, each stimulus was preceded by an instructional task cue. The
order of appropriate left vs. right key press responses was entirely random. A sequence of
nine tasks was constructed such that each possible transition between the three tasks occurred.
This sequence was presented repeatedly throughout different experiments in which the length
of the cue-stimulus interval and the response-cue interval were varied. Koch found implicit
learning effects, notably when the response to cue interval (RCI) was short (100 vs. 900 ms),
but not when the cue to stimulus interval (CSI) was long (100 vs. 900 ms). This suggests that
task sequence learning depends on the co-activation and association of task cues and the
stimuli required to performing the tasks.

The Role of Task Cues in Task Sequence Learning

Our first aim 1in the present study was to examine the contribution of task cues to task
sequence learning. Therefore, we used univalent stimuli, that is, stimuli that were
unambiguously associated with one specific task within a given context. This is in contrast to
previous task sequence learning studies with stimuli that could be used to perform more than
one task in a given context (i.e., bivalent or even frivalent). Besides Koch (2001), who used
trivalent stimuli, Heuer, Schmidtke, and Kleinsorge (2001) reported task sequence learning
with complex bivalent stimuli. They suggested that task sequence learning itself is unlikely to
be found unless the tasks are “interpreted” in some way and they concluded that the
sequences of cues were learned, but without being necessarily associated with the tasks.

In a related study, Gotler, Meiran, and Tzelgov (2003), came to a rather different
conclusion about the role of task cues. They used bivalent stimuli and a task switching design,
in which cues were either of the same kind throughout (constant cue condition) or were one of
two kinds that occurred in random order (varied cues condition). In the latter condition,
participants were instructed about both kinds of cues before the experimental blocks began
and were told that they were equally valid. Gotler et al. reported evidence of implicit task
sequence learning which did not differ in magnitude across the two conditions. In contrast to
Heuer et al., however, Gotler et al. argued that learning must be due to the task sequence
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alone, “since the design prevented learning on the basis of the cue sequence” (p. 6). However,
the two kinds of cue were perceptually rather similar, which has certain implications. The
cues were either long arrows or fairly thick lines. Both types were shown either horizontally
or vertically in order to inform the participant which binary choice dimension to respond to
next. Hence, a generalized perceptual representation of the cue types was very likely to have
been formed, the order of which would have correlated perfectly with the task sequence.
Thus, learning might have been caused by the presence of a cue sequence or by the
correlation of the cue sequence and the task sequence. One way to test this is by using
univalent stimuli. It 1s optional whether cues are included or not with univalent stimuli, and so
their contribution to implicit task sequence learning can be assessed more directly.

The Role of Univalent Stimuli

Originally, implicit sequence learning was investigated with the serial reaction time task
(SRTT). Nearly all the early SRTT studies used univalent stimuli exclusively. This is because
the stimuli were simple, such as asterisks at different locations, shapes and colour patches in
different orders, etc. Similarly, response requirements were simple. The aim of the earlier
studies was threefold. First, it was to explore the degree of complexity of sequence structure
that could be learnt unintentionally, second, it was to clarify whether learning depended more
on the stimulus stream or the response stream, and third, it was to establish whether resultant
knowledge was actually explicit. Instructional cues were not necessary because all that the
participant needed to perform the task was contained in the stimulus itself. Sequences of tasks
and other forms of complex stimuli were introduced as a way of making laboratory
experiments more like real world learning and to test the boundaries of implicit versus
explicit knowledge.

In our previous studies (Cock and Meier, 2007; Meier and Cock, 2010) we used univalent
stimuli without task cues but found learning effects only when a task sequence and a response
sequence were correlated. If one stream was sequenced but the other was not, there were no
RT changes when the sequence was surreptitiously changed to random. Even when a
sequence of stimulus locations was combined with either a task sequence or a response
sequence (Meier and Cock, 2010), implicit sequence learning was only observed when two
correlated streams of information were present (1.e., a task sequence and a response sequence,
a location sequence and a task sequence, or a location sequence and a response sequence).
Moreover, Weiermann, Cock, and Meier (2010) showed that sequence learning in the
paradigm introduced by Heuer et al. (2001) occurred only when the sequence of tasks and the
sequence of task-to-response-mappings were correlated, but not when only one sequenced
stream was present. We concluded that, with univalent stimuli, the mere presence of a
sequenced order amongst the tasks is not sufficient for implicit task sequence learning to
occur (Meier and Cock, 2010). We proposed that the presence of at least two correlated
streams of information is at the core of implicit sequence learning and suggested that the
information in each stream can be of any kind. However, in these previous studies we did not
systematically examine the role of stimulus valency or the role of instructional task cues.
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The Role of Bivalent Stimuli

Our second aim in the present study was to extend the findings of Koch (2001). It should
be noted here that the task sequence learning studies that have used bivalent rather than
univalent stimuli are rooted in the domain of fask-switching rather than sequence learning.
Hence, Koch (2001) was mainly interested in potential differences between “task switch” and
“task repeat” trials and the manipulation of RCI and CSI. In our present experiments,
however, we focus on the role of task cues and stimulus valency in sequence learning
specifically. We anticipated that bivalent, as well as trivalent, task cues would play a positive
role in the learning effects. As noted above, these stimuli have properties relevant to more
than one task, hence participants have to be given instructional cues, and, as a consequence, a
sequence of cues also exists in the materials, which invariably correlates with the sequence of
tasks. We have conjectured, therefore, that the task sequence learning effects that have been
found 1n studies using bivalent stimuli might be attributable to the combined learning of the
task sequence (i.e., automatic task-set activation) and the instructional cue sequence (i.e.,
perceptual sequence learning).

Koch (2001) concluded that learning of the cue types led to pre-activation of the task sets,
referring to it as “an abstract sequence of perceptual stimulus dimensions” (p. 1483). He
suggested that “if the cues are learned, then it 1s highly probable that the cue also activates the
task set associated with i1t” (p. 1484). In other words, Koch seemed to favour an active and
mtegrative kind of learning that links the sequence of task cues and the sequence of tasks.
Furthermore, this account fits well with our argument that correlated streams of information
lie at the core of implicit sequence learning (Cock and Meier, 2007, Meier and Cock, 2010,
Weiermann et al., 2010). Our goal was thus to merge the two approaches.

EXPERIMENT 1

Experiment 1 was conducted to ascertain whether, using a task sequence learning
paradigm, implicit learning effects could be found with instructional task cues and wunivalent
stimuli. In our previous study, using wunivalent stimuli without instructional task cues, we
found sequence learning effects but only when the task sequence was correlated with a binary
choice response sequence of the same length (Cock and Meier, 2007). When combined with a
random order of stimuli and a random order of binary choice responses, the task sequence
showed no learning effects. We hypothesized that task sequence learning in this situation
might benefit from the presence of instructional task cues. Our reasoning was that the stream
of cues would introduce a perceptual ordering that would support task set activation. In order
to test this hypothesis we used a slightly modified version of the paradigm of Koch (2001).

Method

Participants and Design
Forty undergraduate students from the University of Bern participated in return for course
credit (23 women and 17 men, mean age 25 years, age range 22 to 32 years). They were
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assigned at random to one of two experimental conditions. Condition (with and without task
cues) was manipulated between subjects, whilst block was manipulated within subjects,
resulting in a mixed design.

Materials

Stimuli were approximately 4 cm x 3 cm in size and displayed one at a time against a
white background wusing E-Prime 1.1 software (Psychology Software Tools,
www.pstnet.com). A letter task comprised one of six letters (h, 1, r, H, L, R) shown in black
and an upper vs. lowercase decision, a shape task comprised one of six geometric shapes
(circle, horizontal oval, vertical oval, square, horizontal rectangle, vertical rectangle) shown
i black and a curved vs. angular decision, a colour task comprised one of six fuzzy figures
(three presented in red and three in blue) and a red vs. blue decision. The three task
dimensions were therefore mutually exclusive and all 18 stimuli were wnivalent. In both
conditions the randomly ordered stimuli occurred equally often. There were no consecutively
repeated stimulus transitions between trials and no repeated stimulus transitions in the same
block. In other words, there was no complete or even partially repeated stimulus sequence. As
in the study by Koch (2001), the only sequenced order was that of the tasks in conjunction
with the task cues.

In both conditions, task order was sequenced across the blocks of trials, and in a
counterbalanced way relative to a sequence changeover at block 9 (interference block). The
two statistically 1dentical nine element task sequences were “letter colour shape shape letter
letter shape colour colour” and “letter shape colour colour shape shape letter letter colour”.
At any point in the sequence cycle, the correct order of at least two preceding tasks would
need to be known in order to correctly predict the next task (i.e., second order sequencing). In
both conditions left (L) and right (R) key press responses followed a pseudorandom order,
with the restriction of no L or R runs in excess of 3 consecutive trials. The overall numbers of
L and R responses were equal per block.

In one condition, external cues were presented at the four comners of each stimulus
display. Three small “xxx” (1 cm x 0.5 cm) were shown for a letter task, a square inside a
circle (1.3 cm x 1.3 cm) for a shape task, and a yellow “&” (1.5 cm x 1.5 cm) for a colour
task. Stimulus and cue displays were centrally presented in 14 point Courier New font with a
viewing distance of approximately 40 cm. The same two response keys were used for all three
tasks.

Procedure

Participants were tested individually in a quiet room, with instructions given on paper and
summarized on the computer screen. They were told that the experiment concerned the effects
of practice on response speed. The three tasks were explained and participants were instructed
to use their L or R index fingers to make responses. For a colour task, they had to decide as
quickly as possible whether the stimulus was red or blue and press the appropriate response
key (L for red and R for blue). For a shape task, they had to decide whether the stimulus was
curved or angular and press the appropriate response key (L for curved and R for angular),
and for a letter task, they had to decide whether the stimulus was a lower or uppercase letter
and press the appropriate response key (L for lowercase and R for uppercase). Participants in
the condition with task cues were advised that shortly before the appearance of each stimulus
display, cues would appear on screen, telling them which task to perform next. Examples of



160 Beat Meier and Josephine Cock

the cues were shown on an imstruction page, as well as on screen at the start of the
experiment. Participants were told to respond as accurately and quickly as possible, and that if
they made mistakes, they should simply continue. Participants were familiarized with the
stimulus to response mappings (S-R) during an initial practice block. To assist them, there
was a small panel at the edge of the screen indicating which response (L or R) was
appropriate for each task outcome.

Each trial began with a blank screen for 100 ms, followed by a rectangular frame and a
task cue. The cue appeared on screen 100 ms before the stimulus (cue-stimulus interval, CSI)
and remained present until a response was made. There was an interval of 100 ms (response-
cue interval, RCI) before presentation of the next cue.

A block consisted of 72 trials. The initial practice block was followed by eight
experimental blocks, by one interference block (Block 9, comprising 72 trials of the
alternative sequence) and by a final experimental block. There was a brief pause between
each block. No feedback on performance was provided. After the test session, which lasted
approximately 30 to 40 minutes, a structured interview was conducted. Participants were
asked if they had noticed anything in particular about the order of the tasks. The existence of
sequences was explained, and participants were then asked to report the nine element
sequence they had received, either by guessing or from memory.

Data Analysis

Trials on which errors were made, and the first trial after each error, were excluded from
analysis. Error rates were averaged over all blocks of trials and all three tasks. For each block,
the first nine element cycle of the sequence was excluded from analysis. Following the
procedure of Koch (2001), responses with a latency of more than 1,500 ms were discarded
(3%). Error rates were generally low (on average 5%) and are not presented further.

Response time (RT) data for the various tasks were aggregated and mean RTs per block
were computed separately for each participant. Training scores were calculated as the RT
difference between blocks 3 and 7. Decreasing RTs were taken as directly indicative of a
general training effect (possibly also including a sequence learning effect). Interference
scores were calculated as the mean RT difference between block 9 and the average of
surrounding blocks 8 and 10. Increased RTs at block 9 (alternative sequence) were taken as
indirectly indicative of prior learning of the main sequence. An alpha level of .05 was used
for the analyses. Degrees of freedom and MSE values were Greenhouse-Geisser adjusted
where appropriate. Effect sizes are expressed as partial #°.

Results

The RT results decreased imitially for both conditions (see Figure 1 bottom). Mean
training scores (block 3 minus block 7) were 44 ms (SE = 11) for the condition without task
cues and 38 ms (SE = 12) for the condition with task cues. A mixed two factorial ANOVA,
with RTs at blocks 3 to 7 as a within subjects factor and condition as a between subjects
factor, revealed a significant main effect of block, (4, 152) = 10.65, MSE = 947, p <. 01, »*
= .22, but no effect of condition, F(1, 38) = .63, MSE = 67,337, p = .43, n* = .02, and no
mteraction, F(4, 152) = .12, p = 98, *= .003.

Mean interference scores (RTs at block 9 minus the average of blocks 8 and 10) were 2
ms (SE = 7) for the condition without task cues and 6 ms (SE = 6) for the condition with task
cues (see Figure 2).
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Figure 1. Mean response times for Experiment 1 (lower lines) and Experiment 2 (upper lines). Error
bars represent standard errors.
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subjects factor and condition as a between subjects factor. This revealed no main effect of
block, F(1, 38) = .73, MSE = 416, p = .39, n* = .02, no effect of condition, F(1, 38) = .51,
MSE = 7,583, p = .48, n* = .01, and no interaction, F(1, 38) = .23, p = .64, n* = .01. The result
of a planned one-tailed 7-test against an interference score of zero did not reach significance
for either condition, #(19) = 1.01, p = .16, with task cues, and #(19) = .25, p = .40, without task
cues.

Explicit knowledge. Three participants in the condition without task cues, correctly
reported six of the nine task sequence elements they had received (mean interference scores =
-15 ms, 48 ms and 30 ms). The average level of explicit knowledge (EK) for this condition
was 4.20 (SE = .30) elements correct. None of the participants in the condition with task cues
correctly reported as many as six elements. The average EK level for this condition was 3.55
(SE = .20) elements correct.

Conclusion

In Experiment 1, univalent stimuli were used and the presence/absence of instructional
task cues was varied. We anticipated that a stream of instructional cues would infroduce a
perceptual ordering which would support and facilitate incidental task sequence learning
through automatic fask set activation. The results showed only a very small, non significant
task sequence learning effect (mean RT interference score of 2 ms without task cues
compared to 6 ms with task cues). Our tentative, and admittedly speculative, explanation is
that the presence of the stream of instructional cues was not sufficient to activate task
sequence learning. Although the cue sequence correlated perfectly with the task sequence,
which according to our earlier study (Cock and Meier, 2007) ought to induce task sequence
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learning, attention to the cues was not essential for performance. In fact, it was more
economic to ignore them. Attending to the cues could have distracted participants from
making rapid responses as required. We think this is an important finding as it suggests that
whilst correlated streams of information might indeed be necessary for implicit task sequence
learning, they may be insufficient without task set relevance. By task set relevance we mean
that properties of the tasks, such as cues, must be actively processed.

EXPERIMENT 2

Experiment 2 was conducted to ascertain whether, using the task sequence learning
paradigm as in Experiment 1, stronger implicit learning effects would be found with
instructional task cues and either bivalent or trivalent stimuli. This arrangement was
essentially a further extension of the study by Koch (2001). It was anticipated that these kinds
of stimuli would be more likely, than univalent stimuli, to activate the separate task sets
because they should oblige participants to use the cues.

Method

Participants and Design

Forty undergraduate students from the University of Bern participated in return for course
credit (24 women and 16 men, mean age 25 years, age range 17 to 33 years) and were
assigned at random to one of two experimental conditions. Stimulus condition (bivalent or
trivalent) was manipulated between subjects. Block was manipulated within subjects,
resulting in a mixed design as in Experiment 1.

Materials

Bivalent stimuli were created by presenting six different letters and six different
geometrical shapes, identical to those used in Experiment 1 as univalent stimuli, but coloured
red or blue instead of black. Task cues indicated which dimension needed to be attended on
each trial. Trivalent stimuli were created by presenting one out of only two particular letters.
The two letters differed according to case ("B" or "K", "b" or "k"), colour (red or blue) and
shape (curved or angular). Again, task cues indicated the relevant dimension.

Procedure and Data Analysis
These were 1dentical to those in Experiment 1.

Results

The RT results decreased initially for both conditions (see Figure 1 top). Mean training
scores were 179 ms (SE = 31) for the condition with bivalent stimuli and 222 ms (SE = 42)
for the condition with #rivalent stimuli. A mixed two factorial ANOVA , with RTs at blocks 3
to 7 as a within subjects factor and condition as a between subjects factor, revealed a
significant main effect of block, F (4, 152) = 26.08, MSE = 9689, p < .01, y° = 41, a
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significant main effect of condition, F (1, 38) = 5.43, MSE = 328217, p < .025, * = .13, but
no interaction, ¥ (4, 152) = 93, p = 45, n*= .02.

Mean interference scores were 16 ms (SE = 23) for the condition with bivalent stimuli
and 32 ms (SE = 18) for the condition with #rivalent stimuli (see Figure 2). A mixed two
factorial ANOVA with RTs at block 9 compared to the average of blocks 8 and 10 as a
within-subjects factor and condition as a between-subjects factor revealed neither a main
effect of group, F (1, 38) = 2.82, MSE = 4145, p = .10, n* = .07, nor of condition, ¥ (1, 38) =
5.94, MSE = 94917, p = .20, n°= .14 and no interaction, F (1, 38) = .35, p = .56, n*= .01.

While a planned comparison of the interference score against zero failed to reach
significance for the condition with bivalent stimuli, {(19) = .70, p = .25, the comparison
revealed a significant learning effect in the condition with trivalent stimuli, {(19) = 1.87, p =
04.

Explicit knowledge. One participant in the condition with bivalent stimuli correctly
reported eight of the nine task sequence elements she had received (interference score = 191
ms). The average EK level for this condition was 3.85 (SE = .28) elements correct. One
participant in the condition with #rivalent stimuli correctly reported eight elements of the nine
element task sequence and another correctly reported six elements (interference scores 149
ms and 16 ms, respectively). The average EK level for this condition was 4.10 (SE = .30)
elements correct.

Conclusion

In Experiment 2, we hypothesized that implicit task sequence learning effects would be
found in both groups. Although only the trivalent stimuli condition reached statistical
significance, the bivalent stimuli condition showed a trend in the expected direction and we
imagine that running the experiment with a larger number of participants should result in a
significant effect.

50

50

40

fJ.ﬁlE

Exp 1nocue Exp1withcue Exp2bivalent Exp 2 trivalert

RT difference (ms)

Figure 2. Interference scores in terms of mean difference in response time at random block 9 compared
to surrounding sequenced blocks 8 and 10 for Experiments 1 and 2. Error bars represent standard errors.
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With regard to response times in general, participants in the frivalent stimuli condition
performed more slowly than in the bivalent stimuli condition, by about 200 ms throughout the
experiment.

It suggests that this group took more time and perhaps made more effort in preparing for
each upcoming task. It seems possible that these participants learned more about the task
sequence by using the cue sequence more systematically, resulting in a somewhat larger mean
interference score.

GENERAL CONCLUSION

Across the two experiments, we observed that with more complexity in the stimuli larger
task sequence learning effects emerged. This ran from a 2 ms mean interference score on the
random block for the condition univalent stimuli without cues, to 6 ms for univalent stimuli
with cues, to 16 ms for bivalent stimuli with cues, and finally, to 33 ms for trivalent stimuli
with cues (see Figure 2). The gradual increase suggests that learning does not simply happen
in a passive way through the existence of structure in the materials. Rather, it seems that
certain aspects of the underlying structure are engaged, or activated, by the more demanding
task requirements. Among others, Wright and Whittlesea (1998) made a similar point. In a
series of implicit leaming experiments, they demonstrated that what participants learn
depends very much on how the structural components of the materials are organized. They
argued that implicit learning 1s very much an active rather than passive process. This implies
that attentional requirements and relevance of stimulus features might play an important role.

Even so, the role of attention in implicit sequence learning is far from clear. Selective
attention to different aspects of streams of information can improve or impair sequence
learning, or have no effect at all (Jimenez and Mendez, 1999; Riedel and Burton, 2006). For
example, in one of their experiments Jimenez and Mendez (1999) used the traditional SRTT
where participants had to respond to stimulus locations. Additionally, the stimuli were of
various shapes and the shape of the current stimulus predicted the following location. This
relation was found to influence implicit learning, but only when stimulus shape was attended
to in a selective way. Similarly, in an experiment by Riedel and Burton (2006), participants
listened to lists of different colour words, each word being spoken by a different speaker.
Words were presented such that speaker identity followed one sequence and spoken colour
followed another. Riedel and Burton found implicit sequence learning, but only when each
separate sequence was processed under selective attention.

Similarly, some studies have shown a detrimental effect of divided attention (Nissen and
Bullemer, 1987; Shanks and Channon, 2002), whilst others have shown that, depending on
sequence structure, adding a secondary task can have little or no impact (Cohen, Ivry, and
Keele, 1990; Jimenez and Mendez, 1999; Reed and Johnson, 1994). The answer may lie in
the degree to which a secondary task can be successfully incorporated into carrying out
sequence learning requirements (Stadler, 1995, Shanks, Rowland, and Ranger, 2005;
Schmidtke and Heuer, 1997). Stadler, for example, found that the disrupting effect of tone-
counting was not due to a reduction in attentional resources. Rather, the random structure of
the tone-counting task interfered with the regular structure of the sequence that was being
learned. In contrast, in a separate experiment, Stadler showed that sequence learning was not
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disrupted by a secondary memory-for-letters task which needed attention but did not interrupt
the temporal flow of the sequence learning.

Overall, the message from these studies seems to be that task requirements, as well as
type of material and structure of design, contribute to implicit sequence learning and that the
role of attention depends on the precise circumstances. With regard to our present
experiments, and others like them, we suggest that stimulus valency and the presence of
mstructional cues can also play a role in determining what is learned mm an SRTT.
Importantly, their contribution would appear to be closely linked to redundancy as well as
task relevance. For example, in Experiment 1, although cues were present and positively
related to the tasks, it was not vital to process them in order to perform the task requirements.
They could be selectively ignored, and hence they did not enhance learning. In contrast, in
Experiment 2, the changing stimulus dimensions (bivalent and trivalent) needed to be
selectively attended. Hence, task cues were processed in conjunction with sequence learning
and were apparently beneficial.

Another open question is whether task set activation is possible without instructional
cues. In our previous study (Cock and Meier, 2007), which had only univalent stimuli and no
mstructional task cues, we achieved a leamning effect when the sequence of tasks was
correlated with a sequence of L vs. R key press responses. One possibility is that each key
press simply activated the subsequent task set. However, this is unlikely because despite
being the same length, the task sequence and the response sequence were not isomorphic. The
separate components of one stream did not predict the components of the other. More
mmportantly, owing to the correlation, a sequence of perceptual stimulus categories also
existed - in that condition exclusively. We suggested that this perceptual sequence, in
conjunction with the sequences of tasks and of responses, and not the task sequence itself,
was learned. In Experiment 2 of the present study, however, it would seem to be the existence
of the stream of instructional task cues together with the task requirements themselves that
facilitates task sequence learning. More complexity in the stimuli may necessitate selective
attention to the changing dimensions. Furthermore, the sequence of cues and the sequence of
tasks are correlated. We think that a task set activation explanation depends on this active and
itegrative merging of the two streams.

Finally, we have suggested that correlated streams of information may be at the core of
mmplicit learning (Meier and Cock, 2010). The message learned from the present study is that
the mere presence of correlated streams of information is not sufficient. Active or attentive
processing of each of these streams seems to be necessary as well.
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