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Boosting Memory by tDCS to Frontal
or Parietal Brain Regions? A Study of
the Enactment Effect Shows No
Effects for Immediate and Delayed
Recognition
Beat Meier* and Philipp Sauter

Institute of Psychology, University of Bern, Bern, Switzerland

Boosting memory with transcranial direct current stimulation (tDCS) seems to be an

elegant way to optimize learning. Here we tested whether tDCS to the left dorsolateral

prefrontal cortex or to the left posterior parietal cortex would boost recognition memory

in general and/or particularly for action phrases enacted at study. During study, 48

young adults either read or enacted simple action phrases. Memory for the action

phrases was assessed after a retention interval of 45min and again after 7-days to

investigate the long-term consequences of brain stimulation. The results showed a robust

enactment effect in both test sessions. Moreover, the decrease in performance was more

pronounced for reading than for enacting the phrases at study. However, tDCS did not

reveal any effect on subsequent recognition memory performance. We conclude that

memory benefits of tDCS are not easily replicated. In contrast, enactment at study reliably

boosts subsequent memory.

Keywords: DLPFC, PPC, transcranial stimulation, electrical stimulation, proactive interference

INTRODUCTION

Learning can be enhanced by doing. In fact, even the simulation of performing an action can
enhance subsequent memory. This insight has been labeled the enactment effect and it has been
reliably demonstrated empirically in various studies and populations (e.g., Cohen, 1981; Bäckman
et al., 1986; Zimmer and Engelkamp, 1999; Knopf et al., 2005; Masumoto et al., 2015). The
enactment effect occurs for all kinds of episodic memory tests such as free recall, cued recall, and
recognition memory tests (Zimmer and Cohen, 2001, for a review). Recent evidence has suggested
that stimulating the brain with a weak current can also enhance learning. In particular, transcranial
direct current stimulation to the left dorsolateral prefrontal cortex (DLPFC) seems to be an elegant
way to boost memory performance (e.g., Javadi and Walsh, 2012; Javadi et al., 2012; cf. Manenti
et al., 2012; Leshikar et al., 2017). In the present study, the goal was to combine the enactment effect
and tDCS stimulation to boost subsequent memory performance and to gain additional insight
about the brain areas involved in the advantage of enactment.

While there is considerable agreement that motor and sensorimotor networks are involved
during enactment encoding, functional magnetic imaging during retrieval has also suggested the
involvement of parietal brain areas for retrieval of action phrases enacted at encoding (Russ et al.,
2003). To follow up on the brain areas involved in the enactment effect and in episodic memory
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formation more generally, we compared anodal tDCS
stimulation of the left dorsolateral prefrontal cortex (as in
Javadi and Walsh, 2012) and anodal tDCS stimulation of the left
posterior parietal cortex (as suggested by the fMRI results of
Russ et al., 2003).

Through the application of a current between two electrodes
(i.e., an anode and a cathode) tDCS can modulate cortical
excitability (Nitsche and Paulus, 2000, 2001). Typically,
anodal tDCS is thought to induce subthreshold membrane
depolarization (Nitsche et al., 2003b; Bikson et al., 2004; Ruffini
et al., 2013), and it has been suggested that tDCS modulates
mechanisms of cortical metaplasticity which in turn modify
the synaptic bonds between neurons (Nitsche et al., 2003a,
2004; Fritsch et al., 2010; Stagg et al., 2011). As tDCS modulates
cortical plasticity and cortical plasticity is generally involved in
learning, the application of tDCS has the potential to modulate
learning and memory (Rioult-Pedotti et al., 2000; Liebetanz et al.,
2002). However, the exact mechanisms of modulation which are
induced by tDCS are not well understood yet (but see Jacobson
et al., 2012b; Pellicciari et al., 2013; Romero Lauro et al., 2014;
Pisoni et al., 2017 for recent progress).

While there is extensive research on tDCS of the motor
cortex for motor functions (cf. Horvath et al., 2015; Savic and
Meier, 2016), fewer studies have investigated episodic memory
(cf. Dedoncker et al., 2016). Most of these studies have tackled
the left DLPFC to enhance episodic memory. Moreover, several
studies have found modulating effects of parietal cortex tDCS in
episodic memory (Jacobson et al., 2012a; Schaal et al., 2013; Jones
et al., 2014; Pergolizzi and Chua, 2015; Pisoni et al., 2015).

Most relevant for the present study, several previous studies
have found a modulatory effect of tDCS to parietal areas
on subsequent recognition memory. For example, Jones et al.
(2014) systematically tested the effects of left vs. right posterior
parietal cortex (PPC) anodal stimulation across four experiments.
Their results revealed that only left hemispheric stimulation at
encoding enhanced subsequent memory performance. Thus, for
the present study, we also targeted the left PPC.

The design of the present study was inspired by the study of
Javadi and Walsh (2012). They used a procedure that involved
two study phases, one before stimulation (pre-stimulation)
and one after stimulation (post-stimulation; in fact to be
precise, stimulation started 15min before the second study
phase and continued until the end of the study phase). This
allowed a within-subject comparison of stimulation effects by
testing recognition memory after a 45min stimulation wash-
out retention interval. In their first experiment in which tDCS
stimulation was varied at encoding, Javadi and Walsh tested the
effects of anodal and cathodal stimulation of the left DLPFC
against two control conditions (sham and M1). For anodal
stimulation they found better subsequent recognition memory
performance for post-stimulation trials. In contrast, for cathodal
stimulation they found worse subsequent recognition memory
performance for post-stimulation trials. No memory differences
between pre- and post-stimulation trials were found for the
control conditions. Thus, anodal left DLPFC stimulation boosted
subsequent recognition memory. Here, we used a similar set-
up with anodal stimulation of the left DLPFC. In addition

we administered anodal tDCS to the left posterior parietal
cortex (PPC) and a sham stimulation control condition. We
hypothesized that DLPFC stimulation at encoding may boost
recognition memory generally and independent of encoding
condition. In addition, based on the fMRI results by Russ et al.
(2003), parietal stimulation may particularly boost recognition of
action phrases that were enacted at encoding.

Moreover, we included a delayed test session in which
recognition memory was assessed again after 1 week. This
allowed investigating potential long-term effects of tDCS on
episodic memory consolidation. Moreover, it allowed testing the
longevity of the enactment effect which, to our knowledge has not
yet been addressed in the literature.

METHODS

Participants
Forty-eight adults took part in the study (27 women). Their
average age was M = 24.50, SD = 4.376 (range from 18 to
38), their average education was M = 15.92 years, SD = 2.766,
and they all spoke German fluently. The study was approved
by the faculty ethics committee and all participants gave written
informed consent before the experiment. Participants were
randomly assigned to one of the three stimulation conditions
(DLPFC, PPC, sham).

Design
The design was a 3 × 2 × 2 × 2 mixed-factorial with the tDCS
stimulation (DLPFC, PPC, sham) manipulated between subjects
and encoding (read, enact), stimulation phase (pre-stimulation,
post-stimulation) and retention interval (immediate, delayed)
manipulated within subjects.

tDCS
tDCS stimulation was based on the protocol of Javadi and Walsh
(2012). Saline soaked sponge electrodes sized 30 × 30mm for
the target-electrode and 50 × 70mm for the reference-electrode
and a DC Brain Stimulator Plus device (NeuroConn, Ilmenau,
Germany) were used. For prefrontal stimulation of the left
DLPFC, the anode electrode was placed over F3 as in Javadi and
Walsh. For parietal stimulation, the anode electrode was placed
over CP3 as in Schaal et al. (2013) (cf. Mottaghy et al., 2002).
For sham stimulation, we used the same CP3 electrode setup.
For all three conditions, the cathode was placed over the right
supraorbital area. Figure 1 shows a schematic presentation of
the electrode positions in the different stimulation conditions.
Stimulation was set at 0.8mA to achieve approximately the same
current density as Javadi and Walsh, who used a 35× 35mm
sponge and 1mA stimulation (resulting in a current density of
0.082 mA/cm2). Current density in the present study was 0.089
mA/cm2. Fade in and fade out was set to 5 s each. Duration
of the stimulation varied across the three treatment-groups:
Participants in the DLPF and PPC condition were stimulated for
1,200 s, while participants in the sham condition were stimulated
for 30 s. As in Javadi and Walsh (2012), stimulation started after
the first study phase and continued throughout the second study
phase for a total of 20min. Consistent with previous studies,
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FIGURE 1 | Schematic depiction of electrode positions. Left:

Anodal stimulation of the left dorsolateral prefrontal cortex. Right: Anodal

stimulation and Sham stimulation of the parietal cortex.

the second study phase was labeled “post-stimulation” rather
than “during stimulation” because the beginning of this study
phase was post onset of stimulation. Participants were blind with
respect to stimulation condition.

Materials
Memory Task

Stimulus materials consisted of 160 simple action phrases (e.g.,
flip a coin), adapted from Molander and Arar (1998). They
were divided into 16 lists, which were counter-balanced across
different phases of the experiment. For each participant, eight
lists were presented during study (4 pre-, and 4 post-stimulation).
For the immediate test, two pre-and two post-stimulation lists
and four new lists were used. Similarly, for the delayed test, the
other two pre- and post-stimulation lists and four other new lists
were used. Thus, for each participant, half of the action pairs
were presented once at study, and every action pair was presented
once at test. Within each stimulation condition, the lists were
counterbalanced across participants such that each of the 16 lists
occurred equally often in each experimental phase. Each of these
conditions was assigned to one participant in each stimulation
group. Lists and materials are included in the Supplementary
Materials 2.

Filler Tasks

A demographic questionnaire, a vocabulary test (WST; Schmidt
and Metzler, 1992), and a sustained attention test (d2-R;
Brickenkamp et al., 2010) were used as filler tasks. In addition,
American sitcom movie clips were used to attain the 45min
retention interval between study 2 and test 1.

Procedure
Participants performed the experiment individually under
supervision of the experimenter. The experiment consisted of
two sessions separated by 1 week. A schematic depiction of the
procedure is presented in Figure 2.

Session 1 consisted of two study phases, one before and
one after stimulation, a retention interval of 45min to allow
potential stimulation effects to wash out before testing, and a first,
immediate, recognition test. Session 2 was scheduled a week later
and consisted of the second, delayed, recognition test.

In session 1, participants were first informed about tDCS and
the experimental procedure. After providing informed consent,
the saline soaked sponges and electrodes were installed. Then,
pre-stimulation encoding began, lasting for ∼5min without
tDCS-treatment. Participants were informed that they will
presented with short action phrases on the computer screen.
Depending on the prompt on the screen they were instructed
either to read the sentence (when the prompt “read” was
presented above the action phrase) or to enact the action (when
the prompt “enact” was presented above the action phrase). Each
phrase was presented for six s. After the first study phase, tDCS-
treatment was started and lasted for 20min. During the first
phase of tDCS stimulation, participants performed a set of filler
tasks. After 15min of stimulation, the post-stimulation study
phase began, during which stimulation continued, following the
same procedure as pre-stimulation. After a 45-min retention
interval during which participants watched American sitcoms,
the immediate recognition test was conducted. Participants were
informed that they would be presented with another set of
action phrases, some of which had been presented earlier in the
experiment and that they have to decide for each phrase whether
they had seen the sentence before. They were instructed to press
the key b, if they recognized the sentence and the key n if they
did not. After a positive decision they gave a remember/know
response by pressing either the 1- or the 2-key. After a total of 80
trials (two “old” pre-stimulation lists, two “old” post-stimulation
lists, and four “new lists, each consisting of 10 action phrases),
session 1 ended with a reminder for the session 2.

Session 2 took place 1 week after the first session. No tDCS
stimulation was administered. Only of the delayed recognition
test was performed which followed the same procedure as in
session 1, but with different the materials. That is, the 80 trials
consisted of the other two “old” pre-stimulation lists, the other
two “old” post-stimulation lists, and other four “new lists. After
the recognition test, there was a detailed debriefing about the aim
of the study.

Data Analysis
Analyses of variance (ANOVAs) were used for data analyses.
As an index of recognition memory, we calculated the
discrimination score Pr (hits minus false alarms; cf. Snodgrass
and Corwin, 1988), which takes into account both hits and false
alarms at the same time. Originally, we run additional analyses
on Remember and Know-judgements. However, as these analyses
did not reveal any additional insights or differences between
tDCS stimulation and sham conditions, we do not report them
in the Results section. However, these data are presented in the
Supplementary Table 1. Analyses for Hits and False Alarms are
also presented in the Supplementary Tables 2, 3. Effect sizes (η²)
represent partial eta squared.

RESULTS

To analyze the impact of tDCS stimulation (DLPFC, PPC,
sham), encoding (read, enact), stimulation phase (pre, post) and
retention interval (immediate, delayed) on recognition memory
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FIGURE 2 | Procedure and exemplary depiction of the counterbalancing of the stimulus lists for each session. S1 = Study phase 1, S2 = Study phase 2. Four lists

were used in each study phase (in this example, lists 1–5 and lists 5–8) and half of each were presented with read and enact instructions, respectively. Also two lists of

each instruction condition, one from S1 and one from S2 were presented in an immediate or a delayed test phase, together with another four lists that were not

presented previously (in this example, lists 9–12 and lists 13–16). Lists were counterbalanced across study conditions, instruction conditions, and test phases.

Stimulation was initiated after the first study phase (S1) and continued until the end of the second study phase. Sham stimulation was stopped after 30 s of stimulation.

FIGURE 3 | The enactment effect of recognition memory (Pr-scores) across stimulation conditions, pre-/post-stimulation phases and test sessions. Error bars

represent standard errors.

performance, a four-way mixed ANOVA was calculated on
discrimination score Pr. These results are depicted in Figure 3.

The ANOVA revealed a main effect for retention interval,
F(1, 45) = 260.597, p < 0.001, η² = 0.853, due to better
performance in the immediate test, M = 0.76, SD = 0.11,
compared to the delayed test, M = 0.42, SD = 0.14. There
was also a main effect of enactment, F(1, 45) = 139.550, p
< 0.001, η² = 0.756, due to better performance for enacted
items, M = 0.74, SD = 0.14, compared to read items, M =

0.45, SD = 0.13. However, there was no effect of stimulation
F(2, 45) = 0.009, p= 0.991, or stimulation phase, F(1, 45) = 0.618,
p = 0.436. Most critically, there were also no interactions
involving stimulation and stimulation phase, indicating that the
application of tDCS did not modulate memory performance
at all neither for read nor for enacted action phrases nor
for immediate or delayed test, all Fs < 1.190, ps > 0.313
(see Supplementary Table 4 Results for the specific values
for the non-significant interaction effects). We addressed the
power of these critical non-significant interactions involving
tDCS-condition and stimulation phase using a post-hoc power
analysis with G∗Power (cf., Erdfelder et al., 1996). The largest

effect size of the critical interactions involving stimulation
and stimulation phase was η² = 0.035 (i.e., the interaction
between encoding, stimulation and stimulation phase) and
the resulting statistical power was 0.38. To find a significant
interaction with a power of 0.95, a sample size of at least
132 participants would have been necessary, as indicated by
an additional a priori power analysis based on these empirical
results.

In addition, the results showed a three-way interaction
involving retention interval, encoding and study phase, F(1, 45)
= 4.211, p = 0.046, η² = 0.086, and significant two-way
interactions between retention interval and encoding, F(1, 45) =
4.305, p= 0.044, η² = 0.087, and between retention interval
and stimulation phase F(1, 45) =9.398, p = 0.004, η² = 0.159.
To disentangle the triple interaction, two separate ANOVAs
with the within-subject factors retention interval and encoding
for both study phases, pre-stimulation and post- stimulation
were conducted. For pre-stimulation, there were significant main
effects for retention interval, F(1, 48) = 120.631, p < 0.001, η² =
0.715, and encoding, F(1, 48) = 84.463, p > 0.001, η²= 0.638, but
no interaction between retention interval and encoding, F(1, 48)
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= 0.336, p = 0.565, η² = 0.007. In contrast, for post-stimulation,
besides of the two main effects for retention interval, F(1, 48) =
214.143, p < 0.001, η² = 0.817, and encoding, F(1, 48) = 123.960,
p < 0.001, η² = 0.721, the ANOVA revealed also a significant
interaction of retention interval and encoding [F(1, 48) = 8.662,
p = 0.005, η² = 0.153], indicating a larger decline for read items
learned after the stimulation compared to enact items learned
after the stimulation. This effect is illustrated in Figure 4.

As this effect was not affected by stimulation type it rather
reflects an effect of proactive interference in the delayed
condition. Specifically, while in the immediate test the shorter
delay between the post stimulation study and the test phase was
somewhat beneficial, possibly reflecting a kind of recency effect,
this advantage disappeared and was even reversed after the 1
week retention interval. It is likely that this reversal occurred
during consolidation reflecting stronger replay of action phrases
from the first stimulation phase. Importantly, this effect was
only observed for the read phrases which, compared to enacted
phrases, were processed more shallowly.

However, as the main goal was to investigate the effect of
tDCS on recognitionmemory performance and this effect did not
materialize in the overall analysis we run some further analysis
to exclude potential explanations. First, one might argue that
the statistical power of the present study was not sufficient to
find an interaction including the between-subject factor group.
Importantly, however, the design of the study also allows a
within-subject comparison of pre- vs. post stimulation. In the
Javadi and Walsh study, which was based on N = 16, this
comparison was significant with a strong effect size. A power
analysis confirmed that with an alpha of 0.05, this design has
sufficient power (1-Beta = 0.92) to detect an effect of d =

0.8 (Erdfelder et al., 1996). In the present study which also
included N = 16 in each stimulation group, this effect was not
significant, as indicated by an additional analysis that included
only Session 1 in order to compare the effects of tDCS for each
stimulation group separately. Specifically, the 2 × 2 ANOVAs
with enactment (read vs. enact) and stimulation phase (pre-vs.

FIGURE 4 | The enactment effect of recognition memory (Pr-scores) across

test sessions, and pre-/post-stimulation phases, illustrating the interaction

between retention interval, encoding condition, and stimulation phase.

post-stimulation) showed a significant main effect of enactment
[with Fs(1, 15) of 28.351, 55.756, and 31.118, all ps < 0.001 for
the PPC-, DLPFC- and Sham-stimulation groups, respectively),
but no effect for stimulation phase [F(1, 15) = 1.241, p = 0.283
for PPC, F(1, 15) = 1.122, p = 0.306 for DLPFC, and F(1, 15) =
1.097, p = 0.312 for sham]. Similarly, no significant enactment
x stimulation phase emerged [F(1, 15) = 0.067, p = 0.799 for
PPC, F(1, 15) = 0.155, p = 0.699 for DLPFC, and F(1, 15) =

0.254, p = 0.621 for sham]. Thus, these further within-subjects
analyses give no hint for any differential effects of the stimulation
groups vs. the control condition. However, they corroborate the
conclusion that, in any case, enactment is a stronger modulator
of recognition performance than tDCS stimulation, at least with
the stimulation protocols administered in the present study.

However, as performance in the enact condition was high,
in particular in session 1, potential stimulation effects may have
been overshadowed. In order to exclude this possibility, we run
a further analysis for the read condition in Session 1 only.
Again, we focused on the within-subject effect of stimulation
phase (i.e., pre- vs. post-stimulation). Simple t-test for dependent
variables resulted in t(15) = 1.056, p = 0.308 for PPC, t(15) =
1.047, p = 0.312 for DLPFC, and t(15) = 0.747, p = 0.466 for
sham. Thus, again, these analyses show no hint for a differential
effect of stimulation on recognition performance. Rather they
indicate that tDCS did not have a modulating effect on memory
performance.

Last but not least, we tested this hypothesis further using
Bayesian analysis. Bayes factors (BF) were used to assess the
strength of evidence for H1 relative to H0 (Wagenmakers
et al., 2015). A BF of above 3 indicates evidence for the
alternative hypothesis and below 1/3 evidence for the null
hypothesis. BFs between 3 and 1/3 indicate data insensitivity in
distinguishing H0 and H1 (Dienes, 2014). Using JASP (Version
0.8.6.0; cf. Wagenmakers et al., 2015), we calculated a Bayesian
mixed-factorial ANOVA with tDCS stimulation (DLPFC, PPC,
sham) manipulated between subjects and encoding (read,
enact), stimulation phase (pre-stimulation, post-stimulation)
and retention interval (immediate, delayed) manipulated within
subjects. The results are presented in Table 1. Most relevant
are the Bayes Factors in the last column. The main effects
of retention interval and enactment gave large Bayes Factors,
indicating substantial evidence against the null hypothesis
which is complementary to the highly significant effects in the
traditional ANOVA presented above. In contrast, all the analyses
relevant to the effects of tDCS, that is, effects involving the
interaction between tDCS-condition and stimulation phase (pre
vs. post) gave values close to zero, thus indicating substantial
evidence in favor of the null hypothesis. Thus, the results of the
Bayesian analysis support the conclusion that tDCS did not have
an effect in this study.

DISCUSSION

The aim of this study was to investigate whether tDCS
would modulate the enactment effect in recognition memory.
Besides enactment, we also varied the retention interval to
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TABLE 1 | JASP output table of the Bayesian ANOVA on Pr-Rates with tDCS

stimulation (DLPFC, PPC, sham) varied between-subjects and encoding (read,

enact), stimulation phase (pre, post) and retention interval (immediate, delayed), all

varied within-subjects.

Effects P(incl) P(incl|data) BF Inclusion

tDCS 0.886 0.095 0.013

Interval 0.886 1.000 >100

Instruction 0.886 1.000 >100

PrePost 0.886 0.434 0.099

tDCS * Interval 0.503 0.027 0.027

tDCS * Instruction 0.503 0.004 0.004

tDCS * PrePost 0.503 0.002 0.002

Interval * Instruction 0.503 0.348 0.527

Interval * PrePost 0.503 0.243 0.317

Instruction * PrePost 0.503 0.094 0.102

tDCS * Interval * Instruction 0.120 0.000 <0.001

tDCS * Interval * PrePost 0.120 0.000 <0.001

tDCS * Instruction * PrePost 0.120 0.000 <0.001

Interval * Instruction * PrePost 0.120 0.006 0.043

tDCS * Interval * Instruction * PrePost 0.006 0.000 <0.001

P(incl)= prior inclusion probability, P(incl|data)= posterior inclusion probability, BF Inclusion

= Bayes Factor (i.e., change from prior to posterior inclusion odds).

investigate potential long-term effects. The results revealed a
robust enactment effect in both test intervals. However, the
decline across a 1 week interval was larger for action phrases
that were only read compared to those that were enacted, and
this decline was stronger for those phrases that were read in the
second stimulation phase, administered after stimulation, than
for those read in the first stimulation phase, administered before
stimulation. However, as all these effects were not modulated
by the application of tDCS, neither over DLPFC nor over
PPC compared to sham stimulation, we conclude that tDCS
stimulation was not the source of this effect, and overall, tDCS
stimulation of the DLPFC and of the PPC with the current study
protocol was not suitable to modulate memory performance.

This failure is somewhat surprising, as for DLPFC stimulation,
we used a very similar stimulation protocol as Javadi and Walsh
(2012) who were able to boost recognition memory performance.
It is possible that the slight differences in electrode size and
current intensity may be responsible for the lack of tDCS effects.
They used a 35 × 35mm anode sponge and 1mA stimulation
resulting in a current density of 0.082 mA/cm2. We used a 30
× 30mm anode sponge with 0.8mA stimulation resulting in
a current density of 0.089 mA/cm2. Modeling studies of the
motor cortex have shown that such differences would not yield
much different outcomes (e.g., Miranda et al., 2009, Figure 4),
but due to differences in tissue properties these result may
not generalize to other cortical areas such as DLPFC or PPC.
Thus, further modeling studies are required to exclude this
explanation.

Another possibility is that differences in the materials and
procedure were responsible for the different results. For example,
at encoding the participants in the study of Javadi andWalsh had
to respond to the number of syllables and imagine the words
while we asked participants to read or enact action phrases.

As sentences are more complex and involve both syntactic
and morphologic processes, they also involve additional neural
processing correlates. In fact, in episodic memory research many
variables have been identified that affect memory performance
consistently across many situations (i.e., materials, test formats
etc.) such as manipulations of levels of processing, generation,
or enactment, thus, we do not believe that these differences
can be the cause for the different outcome of tDCS-stimulation.
Specifically, as enacting read material engages presumably
additional premotor and posterior parietal areas, we would still
have to find differential effects between the PPC and sham
stimulation condition. It is also possible that the verbal filler task
may have had a specific effect on the tDCS conditions. So far, no
study has addressed the influence of a spoken video filler task on
tDCS.

Another possibility is that recognition memory is less
susceptible to DLPFC stimulation than cued recall. This
interpretation is compatible with the results of a recent study by
Leshikar et al. (2017) who found a performance benefit for cued
recall but not recognition even after a 24 h retention interval. On
the other hand, a recent study by de Lara et al. (2017) also failed
to boost memory performance in a verbal-associative learning
task using a multi-electrode DLPFC tDCSmontage. Importantly,
similar to Leshikar et al. (2017), they tested cued recall either
immediately or after 24 h and did not find any beneficial effects
on memory performance after stimulation.

Similar explanations can be discussed in relation to the
null-effects of PPC stimulation. For example, Schaal et al.
(2013) who found a beneficial effect of PPC tDCS on
pitch memory used somewhat higher current strength (i.e.,
2mA). Jones et al. (2014) who found a beneficial effect of
PPC tDCS on the California Verbal Learning test (CLVT)
stimulated their participants at a somewhat more posterior
brain area (P3 electrode). Also, the CVLT involves several
study trials and tDCS may be more effective when applied
repeatedly to the same study material. Jacobson et al. (2012a)
also stimulated at the P3 electrode position during a word
learning task similar to Javadi and Walsh (2012). They also
found a beneficial effect when they compared anodal left PPC
stimulation to cathodal right PPC stimulation. Thus, again
one might argue that methodological differences between the
studies are responsible for the different results of the present
study.

However, more probable, the inconsistency to find
modulating effects of tDCS may root in the variability of
the cortical changes caused by tDCS. This variability may be at
the core of the still insufficient reliability of tDCS as a method to
boost memory performance. In addition to better understand the
effects of different stimulations, more systematic explorations of
potential effects of methodological differences both on the level
of experimental tasks and on the level of stimulation parameters
are necessary to advance the field (cf. Savic et al., 2017a,b).

As long as there is no better understanding of the conditions
under which tDCS works reliably, a fruitful research strategy may
be to include an experimental manipulation into the study design
that can provide interesting results beyond the potential effects
of tDCS stimulation. In the present study, we followed such a
strategy by testing the trajectory of the enactment effect across 1
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week. In fact, this is the first study that has addressed this question
and besides of the failure to find any beneficial effect of tDCS
on memory performance, the results of this study provide strong
evidence that enacting at study gives memory a long-lasting boost
(cf. Meier et al., 2013, for a similar effect of word-frequency).

To conclude, on a more general level, and related to the
goal to enhance memory performance, one may argue that—
as demonstrated in the present study—simple findings from
experimental psychology such as the instruction to enact at
encoding are more reliable tools to boost memory performance
than tDCS stimulation of the brain.
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